Article Metrics

Abstract view : 112 times

A Preliminary Study of Soil Microbial Abundance in Succulent Plant Rhizospheres

Main Article Content

Aidha Zulaika Dian Rachma Wijayanti Wulan Fitriani Safari

Abstract

Plant host symbiosis is close related to soil microbial abundance. Soil microbial abundance will affect soil quality and fertility, thus will improve plant growth.  Studies on soil microbial abundance in succulent plant rhizosphere, especially in Indonesia, are scarce.  This study aims to observe soil microorganisms' existence and their abundance on succulent plant rhizosphere. This research used two primary methods to isolate Arbuscule Mycorrhizal Fungi (AMF) and actinomycetes. The spore extraction (soil separating) method was used to obtain AMF spores, followed by the root staining method to observe AMF infection on the plant roots. Serial dilution and pour plate method were used for isolation of Actinomycetes. The isolation results showed a high number of Actinomycetes distribution up to 3.3 x 106 Actinomycetes CFU/g from the plant Echinocactus grusonii, while AMF spores displayed the most elevated number up to 47 spore/25g from the plant Deuterocohnia sp. The percentage of AMF root infection is covered by 27,9% median. AMF identification was based on spore. The result showed an abundance presentation of Actinomycetes in each soil sample. AMF and Actinomycetes existence displayed symbiotic interaction between succulent plants and soil microorganisms. AMF and actinomycetes play the role of endophytes that help the growth of cacti, generally have a dry growing environment, and limited nutrition by this symbiotic interaction. Actinomycetes distribution in rhizospheric soil will increase plant growth-promoting factors activity. Eventually, the implications of research results are to explore the abundance and biodiversity of soil microorganisms from succulent plant rhizosphere that lacked exploration.

Article Details

Section
Articles

References

Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221(April 2018), 36–49. https://doi.org/10.1016/j.micres.2019.02.001

Ara, I., Bukhari, N. A., Wijyanti, D. R., & Bakir, M. A. (2012). Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from various regions in Saudi Arabia. African Journal of Biotechnology, 11(16), 3849–3857. https://doi.org/10.5897/ajb11.3950

Arifuzzaman, M., Khatun, M. R., & Rahman, H. (2010). Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. African Journal of Biotechnology, 9(29), 4615–4619.

Ayub, M. A., Ahmad, H. R., Ali, M., Rizwan, M., Ali, S., ur Rehman, M. Z., & Waris, A. A. (2020). Salinity and its tolerance strategies in plants. Plant Life Under Changing Environment, 47–76. https://doi.org/10.1016/B978-0-12-818204-8.00003-5

Baliyarsingh, B., Nayak, S. K., & Mishra, B. B. (2017). Soil Microbial Diversity: An Ecophysiological Study and Role in Plant Productivity. In K. U. Adhya T., Mishra B., Annapurna K., Verma D. (Ed.), Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability (Volume 4). Springer. https://doi.org/doi.org/10.1007/978-981-10-7380-9_1

Bezerra, J. D. P., Azevedo, J. L. de, & Souza-Motta, C. M. (2017). Why Study Endophytic Fungal Community Associated with Cacti Species? Diversity and Benefits of Microorganisms from the Tropics, 21–35. https://doi.org/10.1007/978-3-319-55804-2_2

Bucking, H., Liepold, E., & Ambilwade, P. (2012). The Role of the Mycorrhizal Symbiosis in Nutrient Uptake of Plants and the Regulatory Mechanisms Underlying These Transport Processes. Plant Science, June. https://doi.org/10.5772/52570

Ceasar, S. A. (2020). Regulation of low phosphate stress in plants. Plant Life Under Changing Environment, 123–156. https://doi.org/10.1016/B978-0-12-818204-8.00007-2

Choi, J., Summers, W., & Paszkowski, U. (2018). Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Https://Doi.Org/10.1146/Annurev-Phyto-080516-035521, 56, 135–160. https://doi.org/10.1146/ANNUREV-PHYTO-080516-035521

De Lyra, M. D. C. C. P., Taketani, R. G., De Freitas, A. D., Silva, C. E. R. S. E., Mergulhão, A. C. E. S., Da Silva, M. L. R. B., Antunes, J. E. L. S., De Araújo, A. S. F., & Giachetto, P. F. (2021). Structure and diversity of bacterial community in semiarid soils cultivated with prickly-pear cactus (Opuntia ficus-indica (l.) mill.). Anais Da Academia Brasileira de Ciencias, 93(3), 1–9. https://doi.org/10.1590/0001-3765202120190183

Emmanuel, O. C., & Babalola, O. O. (2020). Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research, 239.

Fonseca-García, C., Coleman-Derr, D., Garrido, E., Visel, A., Tringe, S. G., & Partida-Martínez, L. P. (2016). The Cacti Microbiome: Interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 7(FEB). https://doi.org/10.3389/fmicb.2016.00150

Karray, F., Gargouri, M., Chebaane, A., Mhiri, N., Mliki, A., & Sayadi, S. (2020). Climatic Aridity Gradient Modulates the Diversity of the Rhizosphere and Endosphere Bacterial Microbiomes of Opuntia ficus-indica. Frontiers in Microbiology, 11(July). https://doi.org/10.3389/fmicb.2020.01622

Kavamura, V. N., Taketani, R. G., Lançoni, M. D., Andreote, F. D., Mendes, R., & Soares de Melo, I. (2013). Water Regime Influences Bulk Soil and Rhizosphere of Cereus jamacaru Bacterial Communities in the Brazilian Caatinga Biome. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0073606

Khastini, R. O. (2018). Isolasi, Dan Penapisan Cendawan Endofit Akar Asal Rhizosfer Talas Beneng. Jurnal Biotek, 6(2), 25. https://doi.org/10.24252/jb.v6i2.6823

Kobae, Y., Ohtomo, R., Morimoto, S., Sato, D., Nakagawa, T., Oka, N., & Sato, S. (2019). Isolation of native arbuscular mycorrhizal fungi within young thalli of the liverwort marchantia paleacea. Plants, 8(6). https://doi.org/10.3390/plants8060142

Lanfranco, L., Fiorilli, V., & Gutjahr, C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220(4), 1031–1046. https://doi.org/10.1111/NPH.15230

Lee, S. D., & Seong, C. N. (2014). Nocardioides opuntiae sp . nov ., isolated from soil of a cactus. International Journal of Systematic and Evolutionary Microbiology, 64(6), 2094–2099. https://doi.org/10.1099/ijs.0.060400-0

Luginbuehl, L. H., & Oldroyd, G. E. (2017). Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Current Biology : CB, 27(17), R952–R963. https://doi.org/10.1016/J.CUB.2017.06.042

Nusantara, A. D., Bertham, Y. H., & Mansur, I. (2012). Bekerja Dengan Fungi Mikoriza Arbuskula. SEAMEO BIOTROP.

Ohiwal, M., Widyastuti, R., & Sabiham, S. (2017). Populasi Mikrob Fungsional Pada Rhizosfer Kelapa Sawit di Lahan Gambut Riau. Jurnal Ilmu Tanah Dan Lingkungan, 19(2), 74–80. https://doi.org/10.29244/jitl.19.2.74-80

Prayudyaningsih, R., Sari, & Ramdana. (2015). Mikroorganisme tanah bermanfaat pada rhizosfer tanaman umbi di bawah tegakan hutan rakyat Sulawesi Selatan. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 1(4), 954–959. https://doi.org/10.13057/psnmbi/m010453

Ravnskov, S., Cabral, C., & Larsen, J. (2020). Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis. Biological Control, 141.

Saraswati, R., Husen, E., & Simanungkalit, R. D. . (2007). Soil Biological Analysis Methods. Balai Besar Penelitian dan Pengambangan Sumberdaya Lahan Pertanian. http://balittanah.litbang.pertanian.go.id/ind/dokumentasi/buku/buku biologi tanah.pdf


Setiadi, Y., & Setiawan, A. (2011). Studi Status Fungi Mikoriza Arbuskula di Areal Rehabilitasi Pasca Penambangan Nikel ( Studi Kasus PT INCO Tbk . Sorowako , Sulawesi Selatan ). Jurnal Silvikultur Tropika, 03(01), 88–95.

Shinkafi, S. A., & Gobir, M. A. (2018). Isolation and identification of Rhizosphere Mycoflora of Lycopersicum Esculentum ( tomato ). Advance in Plants and Agriculyural Research, 8(6), 512–515. https://doi.org/10.15406/apar.2018.08.00377

Singh, R., & Dubey, A. K. (2015). Endophytic Actinomycetes as Emerging Source for Therapeutic Compounds. Indo Global Journal of Pharmaceutical Sciences, 05(02), 106–116. https://doi.org/10.35652/igjps.2015.11

Singh, R., & Dubey, A. K. (2018). Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01767

Smith, S. E., & Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Http://Dx.Doi.Org/10.1146/Annurev-Arplant-042110-103846, 62, 227–250. https://doi.org/10.1146/ANNUREV-ARPLANT-042110-103846

Solanki, M. K., Kashyap, P. L., Kumari, B., Ansari, R. A., Sumbul, A., Rizvi, R., & Mahmood, I. (2021). Mycorrhizal fungi and its importance in plant health amelioration. Microbiomes and Plant Health, 205–223. https://doi.org/10.1016/B978-0-12-819715-8.00006-9

Suharno, & Sancayaningsih, R. P. (2013). Fungi Mikoriza Arbuskula: Potensi teknologi mikorizoremediasi logam berat dalam rehabilitasi lahan tambang. Bioteknologi, 10(1), 37–48.

Susilawati, Mustoyo, Budhisurya, E., Anggono, R. C. W., & Simanjuntak, B. H. (2013). Analisis Kesuburan Tanah Dengan Indikator Mikroorganisme Tanah Pada Berbagai Sistem Penggunaan Lahan di Plateau Dieng. AGRIC, 25(1), 64–72.

Susilowati, E., Riniarti, M., & Rini, M. V. (2019). Asosiasi Glomus sp. dan Gigaspora margarita pada bibit Aquilaria malaccensis. E-Journal Menara Perkebunan, 87(2), 104–110. https://doi.org/10.22302/iribb.jur.mp.v87i2.342

Torres, G., National, S., & Aguirre, F. (2012). Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant and Soil, 357, 275–288. https://doi.org/10.1007/s11104-012-1152-4

Van der Heijden, M. G., Martin, F. M., Selosse, M.-A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. The New Phytologist, 205(4), 1406–1423. https://doi.org/10.1111/NPH.13288

Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., & Wu, W. (2016). Metagenomic analysis of microbial consortia enriched from compost: New insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnology for Biofuels, 9(1), 1–17. https://doi.org/10.1186/s13068-016-0440-2

West Virginia University INVAM. (2017). Species Descriptions from Reference Cultures. http://fungi.invam.wvu.edu/the-fungi/species-descriptions.html

Wijayanti, D. R., & Turjaman, M. (2020). Isolation and Characterization Of Arbuscular Mychorhiza Fungi from Gaharu Wood (Aquilaria spp.) Rhizosphere. BioEksakta : Jurnal Ilmiah Biologi Unsoed, 2(3), 297. https://doi.org/10.20884/1.bioe.2020.2.3.3090

Zanane, C., Latrache, H., Elfazazi, K., Zahir, H., & Ellouali, M. (2018). Isolation of actinomycetes from different soils of Beni Amir Morocco. Journal of Materials and Environmental Sciences, 2508(10), 2994–3000. http://www.jmaterenvironsci.com/