Article Metrics

Abstract view : 94 times

Rheotaxis Response Based on Sexual Dimorphism in the Green Swordtail Fish, Xiphophorus hellerii

Main Article Content

Muhammad Irsyad Abiyusfi Ghafari Vita Fitrianti

Abstract

Morphological distinctions between males and females of a species are referred to by sexual dimorphism. It may result from various selection pressures affecting either sex or both and may occur in any dioecious species, including Green Swordtail fish, which are sexually reproductive. This study examined the different rheotaxis responses of Xiphophorus hellerii based on different sexes and morphological features. We analyzed ten adult males, ten gravid females, and ten non-gravid females of Xiphophorus helleri collected down the river and transferred into the column. We counted the number of the individual that performed positive rheotaxis (+), negative rheotaxis (-), and indifference response (0). The result showed different rheotaxis responses shown by male, non-gravid female, and gravid female X. hellerii. The highest percentage of positive rheotaxis response (movement against the current) was shown by non-gravid female X. hellerii, reaching up to 89%. Morphological differences between male, non-gravid female, and gravid female X. hellerii appear to affect the orientation and ability of X. hellerii in giving response against current and certainly has an impact on their survival in nature.

Article Details

Section
Articles

References

Bak-Coleman, J., & Coombs, S. (2014). Sedentary behaviour as a factor in determining lateral line contributions to rheotaxis. The Journal of Experimental Biology, 217(13), 2338 LP – 2347. https://doi.org/10.1242/jeb.102574

Bak-Coleman, J., Smith, D., & Coombs, S. (2015). Going with, then against the flow: Evidence against the optomotor hypothesis of fish rheotaxis. Animal Behaviour, 107(2015), 7–17. https://doi.org/10.1016/j.anbehav.2015.06.007

Basolo, A. L., & Alcaraz, G. (2003). The turn of the sword : length increases male swimming costs in swordtails. In Proceeding of The Royal Society B (pp. 1631–1636). https://doi.org/10.1098/rspb.2003.2388

Blake, R. W. (2006). Biomechanics of rheotaxis in six teleost genera. Canadian Journal of Zoology, 84(8), 1173–1186. https://doi.org/10.1139/Z06-105

Blondel, L., Klemet-N'guessan, S., Scott, M. E., & Hendry, A. P. (2020). Asymmetric isolation and the evolution of behaviours influencing dispersal: Rheotaxis of guppies above waterfalls. Genes, 11(2), 180. https://doi.org/10.3390/genes11020180

Breves, J. P. (2020). Hormonal regulation of aquaporins in fishes. In G. Litwack (Ed.), Vitamins and Hormones (1st ed., Vol. 112, pp. 265–287). Elsevier Inc. https://doi.org/10.1016/bs.vh.2019.10.002

Clotfelter, E. D., & Rodriguez, A. C. (2006). Behavioural changes in fish exposed to phytoestrogens. Environmental Pollution, 144(3), 833–839. https://doi.org/10.1016/j.envpol.2006.02.007

Cresci, A., Rosa, R. De, Putman, N. F., & Agnisola, C. (2017). Comparative Biochemistry and Physiology, Part A Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals. Comparative Biochemistry and Physiology, Part A, 204(2017), 169–176. https://doi.org/10.1016/j.cbpa.2016.11.019

Deal, C. K., & Volkoff, H. (2020). The Role of the Thyroid Axis in Fish. Frontiers in Endocrinology, 11(November), 1–25. https://doi.org/10.3389/fendo.2020.596585

Dhurmeea, Z., Pethybridge, H., Appadoo, C., & Bodin, N. (2018). Lipid and fatty acid dynamics in mature female albacore tuna (Thunnus alalunga) in the western Indian Ocean. PLoS ONE, 13(4), 1–20. https://doi.org/10.1371/journal.pone.0194558

Dunn, N. R., O'Brien, L. K., Burridge, C. P., & Closs, G. P. (2020). Morphological convergence and divergence in galaxias fishes in lentic and lotic habitats. Diversity, 12(5), 13–16. https://doi.org/10.3390/D12050183

Fernandes, V. F. L., Macaspac, C., Lu, L., & Yoshizawa, M. (2018). Evolution of the developmental plasticity and a coupling between left mechanosensory neuromasts and adaptive foraging behavior. Developmental Biology, 441(2), 262–271. https://doi.org/10.1016/j.ydbio.2018.05.012

Filby, A. L., Paull, G. C., Searle, F., Ortiz-Zarragoitia, M., & Tyler, C. R. (2012). Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: A mechanistic analysis. Environmental Science and Technology, 46(6), 3472–3479. https://doi.org/10.1021/es204023d

Fleuren, M., Leeuwen, J. L. Van, & Pollux, B. J. A. (2019). Superfetation reduces the negative effects of pregnancy on the fast-start escape performance in live-bearing fish. In Proceeding of The Royal Society B of The Royal Society B (p. 286). The Royal Society.

Ge, A., Wang, X., Ge, M., Hu, L., Feng, X., Du, W., & Liu, B. (2018). Profile analysis of C. elegans rheotaxis behavior using a microfluidic device. Lab on Chip, 19(3), 475–483. https://doi.org/10.1039/c8lc01087k

Grzimek, B., Schlager, N., McDade, M. C., Olendorf, D., Zoo, A., & Association, A. (2004). Grzimek' s Animal Life Encyclopedia , 2nd Edition Overview Alternate Formats. Gale.

Haas, T. C., Blum, M. J., & Heins, D. C. (2010). Morphological responses of a stream fish to water impoundment. Biology Letters Evolutionary Biology, 6(May), 803–806. https://doi.org/10.1098/rsbl.2010.0401

Hallerman, E. M., McLean, E., & Fleming, I. A. (2007). Effects of growth hormone transgenes on the behavior and welfare of aquacultured fishes: A review identifying research needs. Applied Animal Behaviour Science, 104(3–4), 265–294. https://doi.org/10.1016/j.applanim.2006.09.008

Hanif, M. A., Siddik, M. A. B., Islam, M. A., Chaklader, M. R., & Nahar, A. (2019). Multivariate morphometric variability in sardine, Amblygaster clupeoides (Bleeker, 1849), from the Bay of Bengal coast, Bangladesh. The Journal of Basic and Applied Zoology, 80(1). https://doi.org/10.1186/s41936-019-0110-6

Hecker, A., Anger, P., Braaker, P. N., Schulze, W., & Schuster, S. (2020). High-resolution mapping of injury-site dependent functional recovery in a single axon in zebrafish. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-1034-x

Herzog, H., Steltenkamp, S., Klein, A., Tätzner, S., Schulze, E., & Bleckmann, H. (2015). Micro-machined flow sensors mimicking lateral line canal neuromasts. Micromachines, 6(8), 1189–1212. https://doi.org/10.3390/mi6081189

Hockley, F. A., Wilson, C. A. M. E., Brew, A., & Cable, J. (2014). Fish responses to flow velocity and turbulence in relation to size, sex and parasite load. Journal of the Royal Society Interface, 11(91), 1–11. https://doi.org/10.1098/rsif.2013.0814

Karino, A., Karino, K., Orita, K., & Sato, A. (2006). Long Tails Affect Swimming Performance and Habitat Choice in the Male Guppy Long Tails Affect Swimming Performance and Habitat Choice in the Male Guppy. Zoological Science, 23(3), 255–260. https://doi.org/10.2108/zsj.23.255

Kelley, J. L., Davies, P. M., Collin, S. P., & Grierson, P. F. (2017). Morphological plasticity in a native freshwater fish from semiarid Australia in response to variable water flows. Ecology and Evolution, 7(16), 6595–6605. https://doi.org/10.1002/ece3.3167

Liley, N. R. (1972). The effects of estrogens and other steroids on the sexual behavior of the female guppy, Poecilia reticulata. General and Comparative Endocrinology, 3(SUPPL.), 542–552. https://doi.org/10.1016/0016-6480(72)90185-2

Liu, G., Wang, A., Wang, X., & Liu, P. (2016). A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish. Applied Bionics and Biomechanics, 2016, 15. https://doi.org/10.1155/2016/4732703

Mogdans, J. (2019). Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. Journal of Fish Biology, 95(1), 53–72. https://doi.org/10.1111/jfb.13966

Moroni, F. bio T., Ortega, A. nio C., Moroni, R. B., Mayag, B., Jesus, R. Rio S. de, & Lessi, E. (2015). Limitations in decision context for selection of amazonian armoured catfish acari-bod (Pterygoplichthys pardalis) as candidate species for aquaculture. International Journal of Fisheries and Aquaculture, 7(8), 142–150. https://doi.org/10.5897/ijfa15.0480

Mu, X., Cao, P., Gong, L., Baiyin, B., & Li, X. (2019). A classification method for fish swimming behaviors under incremental water velocity for fishway hydraulic design. Water (Switzerland), 11(10), 1–16. https://doi.org/10.3390/w11102131

Olive, R., Wolf, S., Dubreuil, A., Bormuth, V., Debrégeas, G., & Candelier, R. (2016). Rheotaxis of larval zebrafish: Behavioral study of a multi-sensory process. Frontiers in Systems Neuroscience, 10(FEB), 1–9. https://doi.org/10.3389/fnsys.2016.00014

Oteiza, P., Odstrcil, I., Lauder, G., Portugues, R., & Engert, F. (2017). A novel Mechanism for Mechanosensory-Based Rheotaxis in Larval Zebrafish. Nature, 547(27 July 2017), 1–12. https://doi.org/10.1038/nature23014

Pinto, P. I. S., Estêvão, M. D., & Power, D. M. (2014). Effects of estrogens and estrogenic disrupting compounds on mineralized fish tissues. Marine Drugs, 12(8), 4474–4494. https://doi.org/10.3390/md12084474

Quicazan-Rubio, E. M., Van Leeuwen, J. L., Van Manen, K., Fleuren, M., Pollux, B. J. A., & Stamhuis, E. J. (2019). Coasting in live-bearing fish: The drag penalty of being pregnant. Journal of the Royal Society Interface, 16(151), 20180714. https://doi.org/10.1098/rsif.2018.0714

Raye, G. Del, Jorgensen, S. J., Krumhansl, K., Ezcurra, J. M., & Block, B. A. (2013). Traveling light : white sharks ( Carcharodon carcharias ) rely on body lipid stores to power ocean-basin scale migration. In Proceeding of The Royal Society B (p. 280). https://doi.org/10.1098/rspb.2013.0836

Shiau, J., Watson, J. R., Cramp, R. L., Gordos, M. A., & Franklin, C. E. (2020). Interactions between water depth, velocity and body size on fish swimming performance: Implications for culvert hydrodynamics. Ecological Engineering, 156(December 2019), 105987. https://doi.org/10.1016/j.ecoleng.2020.105987

Shuai, F., Yu, S., Lek, S., & Li, X. (2018). Habitat effects on intra-species variation in functional morphology: Evidence from freshwater fish. Ecology and Evolution, 8(22), 10902–10913. https://doi.org/10.1002/ece3.4555

Spiller, L., Grierson, P. F., Davies, P. M., Hemmi, J., Collin, S. P., & Kelley, J. L. (2017). Functional diversity of the lateral line system among populations of a native Australian freshwater fish. Journal of Experimental Biology, 220(12), 2265–2276. https://doi.org/10.1242/jeb.151530

Stacey, N. E. (1981). Hormonal Regulation of Female Reproductive Behavior in Fish 1. American Zoologist, 316(December 1979), 305–316. https://doi.org/10.1093/icb/21.1.305

Svozil, D. P., Baumgartner, L. J., Fulton, C. J., Kopf, R. K., & Watts, R. J. (2020). Morphological predictors of swimming speed performance in river and reservoir populations of Australian smelt Retropinna semoni. Journal of Fish Biology, 97(6), 1–12. https://doi.org/10.1111/jfb.14494

Tang, W., & Chang, S. (2016). A Semi-Lagrangian method for the weather options of mean-reverting Brownian motion with jump-diffusion. Computers and Mathematics with Applications, 71(5), 1045–1058. https://doi.org/10.1016/j.camwa.2015.12.040

Wagle, S. K., Pradhan, N., & Shrestha, M. K. (2015). Morphological Divergence of Snow Trout (Schizothorax Richardsonii, Gray 1932) from Rivers of Nepal with Insights from a Morphometric Analysis. International Journal of Applied Sciences and Biotechnology, 3(3), 464–473. https://doi.org/10.3126/ijasbt.v3i3.13123

Weidner, J., Jensen, C. H., Giske, J., Eliassen, S., & Jørgensen, C. (2020). Hormones as adaptive control systems in juvenile fish. Biology Open, 9(2), 1–16. https://doi.org/10.1242/bio.046144

Whittington, C. M., & Wilson, A. B. (2013). The role of prolactin in fish reproduction. General and Comparative Endocrinology, 191(15 September 2013), 123–136. https://doi.org/10.1016/j.ygcen.2013.05.027

Yan, J., Liao, K., Wang, T., Mai, K., Xu, W., & Ai, Q. (2015). Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake, and triacylglycerol synthesis and catabolism at the transcriptional level. PLoS ONE, 10(6), 1–16. https://doi.org/10.1371/journal.pone.0129937

Zhang, X., Chen, Z., & Liu, Y. (2017). A Continuum-Based Particle Method for Extreme Loading Cases. The Material Point Method (pp. 1–9). London, United Kingdom: Academic Press. https://doi.org/10.1016/b978-0-12-407716-4.00001-6