Article Metrics

Abstract view : 322 times

Antimicrobial Resistance and Molecular Identification of Clinical Multi-Drug Resistant Enterobacter Cloacae

Main Article Content

Siti Nur Fajriah Maulin Inggraini Noor Andryan Ilsan Reza Anindita

Abstract

Enterobacter cloacae is a Gram-negative bacteria causing nosocomial infections. This bacteria has increased resistance to various antibiotics in the past five years, resulting in a multi-drug-resistant (MDR) phenotype. In particular, MDR E. cloacae causes longer hospitalization time, increases medical costs, and affects morbidity and mortality. This study aimed to observe the minimum inhibitory concentration (MIC) of clinical E. cloacae towards several antibiotics and molecular identification of MDR E.cloacae. This study was conducted in a descriptive design. Secondary data was collected at the microbiology laboratory of the Teaching Hospital in Bekasi, Indonesia, from May to September 2020. Sampel was carbapenem resistant E.cloacae. The isolate was originated from a human clinical specimen, then was confirmed molecular identification using 16s rRNA. In this study, only one carbapenem-resistant E. cloacae, which is also MDR bacteria, was found. This E. cloacae was categorized as MDR bacteria since it was resistant to more than three antibiotic classes, including carbanemen, extended-spectrum cephalosporin, penicillins + β lactamase inhibitor, antipseudomonal penicillins + β lactamase inhibitor aminoglycoside, and penicillin. Vitek 2 identification of this isolate was E. cloacae complex. It showed similar results to molecular identification based on a partial sequence of 16s rRNA. BLASTn result of the trimmed sequence was E. cloacae with 99.78 % similarity.

Article Details

Section
Articles

References

CLSI. (2018). Performance standards for antimicrobial susceptibility testing (28 ed., Vol. 38). Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute.

Davin-Regli, A., & Pagès, J. M. (2015). Enterobacter aerogenes and Enterobacter cloacae; Versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6, 1–10. https://doi.org/10.3389/fmicb.2015.00392

Ferranti, M., Schiaroli, E., Palmieri, M. I., Repetto, A., Vecchiarelli, A., Francisci, D., Mencacci, A., & Monari, C. (2018). Carbapenemase-producing Enterobacteriaceae isolates resistant to last-line antibiotics in an Italian general hospital. New Microbiologica, 41(4), 274–281. https://pubmed.ncbi.nlm.nih.gov/30252925/

Hanson, N. D. (2003). AmpC β-lactamases: What do we need to know for the future? Journal of Antimicrobial Chemotherapy, 52(1), 2–4. https://doi.org/10.1093/jac/dkg284

Huang, S., Dai, W., Sun, S., Zhang, X., & Zhang, L. (2012). Prevalence of Plasmid-Mediated Quinolone Resistance and Aminoglycoside Resistance Determinants among Carbapeneme Non-Susceptible Enterobacter cloacae. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0047636

Ito, A., Nishikawa, T., Ota, M., Ito-Horiyama, T., Ishibashi, N., Sato, T., Tsuji, M., & Yamano, Y. (2018). Stability and low induction propensity of cefiderocol against chromosomal AmpC b-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. Journal of Antimicrobial Chemotherapy, 73(11), 3049–3052. https://doi.org/10.1093/jac/dky317

Jacoby, G. A. (2009). AmpC Β-Lactamases. Clinical Microbiology Reviews, 22(1), 161–182. https://doi.org/10.1128/CMR.00036-08

Janasuta, P. B., Sukrama, D. M., & Dwija, I. B. (2020). Pola Kepekaan Bakteri Enterobacter sp yang Diisolasi dari Spesimen Urin di RSUP Sanglah. Jurnal Medika Udayana, 9(1), 51 - 56. https://doi.org/10.24843.MU.2020.V9.i1.P10

Jean, S. S., Teng, L. J., Hsueh, P. R., Ho, S. W., & Luh, K. T. (2002). Antimicrobial susceptibilities among clinical isolates of extended-spectrum cephalosporin-resistant Gram-negative bacteria in a Taiwanese university hospital. Journal of Antimicrobial Chemotherapy, 49(1), 69–76. https://doi.org/10.1093/jac/49.1.69

Jiang, X., Ni, Y., Jiang, Y., Yuan, F., Han, L., Li, M., Liu, H., Yang, L., & Lu, Y. (2005). Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. Journal of Clinical Microbiology, 43(2), 826–831. https://doi.org/10.1128/JCM.43.2.826-831.2005

Jin, C., Zhang, J., Wang, Q., Chen, H., Wang, X., Zhang, Y., & Wang, H. (2018). Molecular characterization of carbapenem-resistant enterobacter cloacae in 11 Chinese cities. Frontiers in Microbiology, 9, 1–8. https://doi.org/10.3389/fmicb.2018.01597

Khari, F. I. M., Karunakaran, R., Rosli, R., & Tay, S. T. (2016). Genotypic and phenotypic detection of AmpC β-lactamases in Enterobacter spp. Isolated from a teaching hospital in Malaysia. PLoS ONE, 11(3), 1–12. https://doi.org/10.1371/journal.pone.0150643

Linde, H. J., Notka, F., Irtenkauf, C., Decker, J., Wild, J., Niller, H. H., Heisig, P., & Lehn, N. (2002). Increase in MICs of ciprofloxacin in vivo in two closely related clinical isolates of Enterobacter cloacae. Journal of Antimicrobial Chemotherapy, 49(4), 625–630. https://doi.org/10.1093/jac/49.4.625

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., & Wade, W. G. (1998). Marchesi JR 1998 Primer für 16S rRNA.pdf. 64(2), 795–799. https://doi.org/10.1128/AEM.64.2.795-799.1998

Pailhoriès, H., Cassisa, V., Lamoureux, C., Chesnay, A., Lebreton, C., Lemarié, C., Kempf, M., Mahaza, C., Joly-Guillou, M. L., & Eveillard, M. (2014). Discordance in the minimal inhibitory concentrations of ertapenem for Enterobacter cloacae: Vitek 2 system versus Etest and agar dilution methods. International Journal of Infectious Diseases, 18(1), 94–96. https://doi.org/10.1016/j.ijid.2013.09.006

Tian, X., Huang, C., Ye, X., Jiang, H., Zhang, R., Hu, X., & Xu, D. (2020). Carbapenem-resistant Enterobacter cloacae causing nosocomial infections in southwestern china: Molecular epidemiology, risk factors, and predictors of mortality. Infection and Drug Resistance, 13, 129–137. https://doi.org/10.2147/IDR.S234678

Wang, S., Xiao, S. Z., Gu, F. F., Tang, J., Guo, X. K., Ni, Y. X., Qu, J. M., & Han, L. Z. (2017). Antimicrobial susceptibility and molecular epidemiology of clinical Enterobacter cloacae bloodstream isolates in Shanghai, China. PLoS ONE, 12(12), 1–12. https://doi.org/10.1371/journal.pone.0189713

Wang, S., Zhou, K., Xiao, S., Xie, L., Gu, F., Li, X., Ni, Y., Sun, J., & Han, L. (2019). A Multidrug Resistance Plasmid pIMP26, Carrying bla IMP-26, fosA5, bla DHA-1, and qnrB4 in Enterobacter cloacae. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-46777-6

Wu, C., Lin, C., Zhu, X., Liu, H., Zhou, W., Lu, J., Zhu, L., Bao, Q., Cheng, C., & Hu, Y. (2018). The β-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae. International Journal of Genomics, 2018. https://doi.org/10.1155/2018/4989602

Zhu, X., Li, P., Qian, C., Liu, H., Lin, H., Zhang, X., Li, Q., Lu, J., Lin, X., Xu, T., Zhang, H., Hu, Y., Bao, Q., & Li, K. (2020). Prevalence of aminoglycoside resistance genes and molecular characterization of a novel gene, aac(3)-iig, among clinical isolates of the enterobacter cloacae complex from a chinese teaching hospital. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.00852-20