Evaluating the Efficiency of Lemna perpussilla in Removing Heavy Metals from River Wastewater in Yogyakarta
Main Article Content
Abstract
Heavy metal pollution in Yogyakarta's rivers, caused by textile industries, sand mining, and domestic waste, poses significant environmental and health risks. While conventional water treatment methods face limitations, phytoremediation using Lemna offers a sustainable solution due to its ability to absorb heavy metals efficiently. This study assessed the impact of varying Lemna biomass (control, 20 g, 30 g, 40 g, 50 g per container) on reducing As, Cd, Cr, and Pb in textile, sand mining, and domestic wastewater over three weeks. Heavy metal concentrations were measured using an Atomic Absorption Spectrophotometer (AAS), and Lemna’s growth rates were analyzed using ANOVA followed by Tukey’s HSD. Results showed that Lemna perpusilla effectively adsorbs As, Cd, Cr, and Pb from domestic, sand mining, and batik textile wastewater, with higher biomass leading to improved removal efficiencies. Maximum heavy metal adsorption was observed in batik textile wastewater, achieving over 70% removal for all metals, while domestic and sand mining wastewater showed variable adsorption rates depending on the metal and Lemna biomass. Optimal biomass for growth and adsorption varied: 30 g for domestic, 50 g for sand mining, and 40 g for batik textile wastewater.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Aminatun, T., Rakhmawati, A., Budiasih, K. S., Marfuatun, M., Rijal, B. S., Amin, A. N., Arifin, D. M. N., & Putri, A. S. (2024). Identifikasi Logam Berat Kromium di Tiga Sungai yang Melintasi Kota Yogyakarta dan Potensi Fitoremediasinya. Jurnal Ilmu Lingkungan, 22(3), 620–631. https://doi.org/10.14710/jil.22.3.620-631
Amjad, M., Hussain, S., Javed, K., Rehman Khan, A., & Shahjahan, M. (2020). The Sources, Toxicity, Determination of Heavy Metals and Their Removal Techniques from Drinking Water. World Journal of Applied Chemistry, 5(2), 34. https://doi.org/10.11648/j.wjac.20200502.14
Basuki, T. M., Indrawati, D. R., Nugroho, H. Y. S. H., Pramono, I. B., Setiawan, O., Nugroho, N. P., Nada, F. M. H., Nandini, R., Savitri, E., Adi, R. N., Purwanto, P., & Sartohadi, J. (2024). Water Pollution of Some Major Riversin Indonesia: The Status, Institution, Regulation,and Recommendation for Its Mitigation. Polish Journal of Environmental Studies, 33(4), 3515–3530. https://doi.org/10.15244/pjoes/178532
Ceschin, S., Crescenzi, M., & Iannelli, M. A. (2020). Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environmental Science and Pollution Research, 27(13), 15806–15814. https://doi.org/10.1007/s11356-020-08045-3
Chrismadha, T., Suryono, T., Magfiroh, M., Mardiati, Y., & Mulyana, E. (2019). Phytoremediation of Maninjau Lake water using Minute Duckweed (Lemna perpusilla Torr.). IOP Conference Series: Earth and Environmental Science, 308(1), 012021. https://doi.org/10.1088/1755-1315/308/1/012021
Coughlan, N. E., Walsh, É., Ahern, R., Burnell, G., O’Mahoney, R., Kuehnhold, H., & Jansen, M. A. K. (2022). Flow Rate and Water Depth Alters Biomass Production and Phytoremediation Capacity of Lemna minor. Plants, 11(16), 2170. https://doi.org/10.3390/plants11162170
DalCorso, G., Fasani, E., Manara, A., Visioli, G., & Furini, A. (2019). Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. International Journal of Molecular Sciences, 20(14), 3412. https://doi.org/10.3390/ijms20143412
Daud, M. K., Ali, S., Abbas, Z., Zaheer, I. E., Riaz, M. A., Malik, A., Hussain, A., Rizwan, M., Zia-ur-Rehman, M., & Zhu, S. J. (2018). Potential of Duckweed ( Lemna minor ) for the Phytoremediation of Landfill Leachate. Journal of Chemistry, 2018, 1–9. https://doi.org/10.1155/2018/3951540
Daud, N. M., Abdullah, S. R. S., Hasan, H. A., Ismail, N. ’Izzati, & Dhokhikah, Y. (2022). Integrated physical-biological treatment system for batik industry wastewater: A review on process selection. Science of The Total Environment, 819, 152931. https://doi.org/10.1016/j.scitotenv.2022.152931
Handayani, W., Kristijanto, A. I., & Hunga, A. I. R. (2018). Are natural dyes eco-friendly? A case study on water usage and wastewater characteristics of batik production by natural dyes application. Sustainable Water Resources Management, 4(4), 1011–1021. https://doi.org/10.1007/s40899-018-0217-9
Juliani, A., Rahmawati, S., & Yoneda, M. (2021). Heavy metal characteristics of wastewater from batik industry in Yogyakarta area, Indonesia. International Journal of GEOMATE, 20(80), 59–67. https://doi.org/10.21660/2021.80.6271
Li, J., Wang, X., Zhao, G., Chen, C., Chai, Z., Alsaedi, A., Hayat, T., & Wang, X. (2018). Metal–organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 47(7), 2322–2356. https://doi.org/10.1039/C7CS00543A
Liu, Y., Xu, H., Yu, C., & Zhou, G. (2021). Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy, 13(1), 70–82. https://doi.org/10.1111/gcbb.12747
Luo, J., Zhang, S., Sun, M., Yang, L., Luo, S., & Crittenden, J. C. (2019). A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 13(9), 9811–9840. https://doi.org/10.1021/acsnano.9b03649
Nguyen, T. Q., Sesin, V., Kisiala, A., & Emery, R. J. N. (2020). Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environmental Toxicology and Chemistry, 40(1), 7–22. https://doi.org/10.1002/etc.4909
Purba, N. C., & Fitrihidajati, H. (2021). Kualitas Perairan Sungai Sadar Berdasarkan Indeks Keanekaragaman Makrozoobentos dan Kadar Logam Berat (Pb) di Kabupaten Mojokerto. LenteraBio : Berkala Ilmiah Biologi, 10(3), 292–301. https://doi.org/10.26740/lenterabio.v10n3.p292-301
Rai, P. K., & Nongtri, E. S. (2024). Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): Coupling with biorefinery prospects for sustainable phytotechnologies. Environmental Science and Pollution Research, 31(11), 16216–16240. https://doi.org/10.1007/s11356-024-32177-5
Raza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M. (2020). Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology, 9(7), 177. https://doi.org/10.3390/biology9070177
Santoso, D. H., Usama, I. S. I., & Adventia, M. N. (2024). Environmental degradation valuation in Daerah Istimewa Yogyakarta. 020003. https://doi.org/10.1063/5.0226477
Sasmaz, M., Arslan Topal, E. I., Obek, E., & Sasmaz, A. (2015). The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. Journal of Environmental Management, 163, 246–253. https://doi.org/10.1016/j.jenvman.2015.08.029
Suprayogi, S., Marfai, M. A., Cahyadi, A., Latifah, R., & Fatchurohman, H. (2019). Analyzing the Characteristics of Domestic Wastes in Belik River, the Special Region of Yogyakarta, Indonesia. ASEAN Journal on Science and Technology for Development, 36(3). https://doi.org/10.29037/ajstd.591
Trisnaning, P. T., Zamroni, A., Sugarbo, O., Prasetya, H. N. E., Sagala, S. T., & Hardiansyah, M. Y. (2022). Quality of surface water due to sand mining activity: A case study from the Progo River, Daerah Istimewa Yogyakarta Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 1098(1), 012031. https://doi.org/10.1088/1755-1315/1098/1/012031
Walsh, É., Coughlan, N. E., O’Brien, S., Jansen, M. A. K., & Kuehnhold, H. (2021). Density Dependence Influences the Efficacy of Wastewater Remediation by Lemna minor. Plants, 10(7), 1366. https://doi.org/10.3390/plants10071366
Walsh, É., Kuehnhold, H., O’Brien, S., Coughlan, N. E., & Jansen, M. A. K. (2021). Light intensity alters the phytoremediation potential of Lemna minor. Environmental Science and Pollution Research, 28(13), 16394–16407. https://doi.org/10.1007/s11356-020-11792-y
Wu, L., Garg, S., & Waite, T. D. (2024). Progress and challenges in the use of electrochemical oxidation and reduction processes for heavy metals removal and recovery from wastewaters. Journal of Hazardous Materials, 479, 135581. https://doi.org/10.1016/j.jhazmat.2024.135581
Xiang, H., Min, X., Tang, C.-J., Sillanpää, M., & Zhao, F. (2022). Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. Journal of Water Process Engineering, 49, 103023. https://doi.org/10.1016/j.jwpe.2022.103023
Xu, J., Liu, C., Hsu, P.-C., Zhao, J., Wu, T., Tang, J., Liu, K., & Cui, Y. (2019). Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications, 10(1), 2440. https://doi.org/10.1038/s41467-019-10472-x
Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Ahmad Khan, S. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120, 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039
Zakaria, N., Rohani, R., Wan Mohtar, W. H. M., Purwadi, R., Sumampouw, G. A., & Indarto, A. (2023). Batik Effluent Treatment and Decolorization—A Review. Water, 15(7), 1339. https://doi.org/10.3390/w15071339